If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-12x-53=0
a = 2; b = -12; c = -53;
Δ = b2-4ac
Δ = -122-4·2·(-53)
Δ = 568
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{568}=\sqrt{4*142}=\sqrt{4}*\sqrt{142}=2\sqrt{142}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-2\sqrt{142}}{2*2}=\frac{12-2\sqrt{142}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+2\sqrt{142}}{2*2}=\frac{12+2\sqrt{142}}{4} $
| X^+x=56 | | 2+22+6+9=x+95 | | 4x+1x=10 | | 4-2v=-10 | | G(-x)=4x+9 | | 3x+1x=40 | | V=2.5(6.4−t) | | 2(3x-5)=4(2x+5) | | 27=1/3x+1 | | 2b-11b-(-5b)=12 | | 17/x+20=6 | | 220+0.25x=375 | | 4=1/6(5x-12) | | -70=-7(v+4) | | X-2/6+x+8/5=7/6 | | 12x2+4x−5=0 | | 8-7u=-20 | | 6x-2=4x+48 | | 7+5(r+3)=6+3(r−2) | | 1/5(5x-4)=-4/9-8/9 | | -37-(-21)=x/10 | | −11f=7-14f+5 | | 4=2x2 | | X=y^2-5y | | (t+1)(t−1)=(t+4)(t−5)+7 | | 1/2(x-1)+1/4=2/3x-1/6x+3/4 | | -x^2-5x-28=0 | | 27=3c-c(6-2c) | | 14+2(4g+-3)=40 | | 7+2x(5)=23x+2 | | √2x^2-9=x | | 7+2x(5)=x*23+2 |